En el experimento, los átomos simulan acciones absurdas “como si fueran actores en un teatro cuántico”

El grupo de investigación Quantum Technologies for Information Science (QUTIS) de la Universidad del País Vasco/Euskal Herriko Unibertsitatea, liderado por el profesor Ikerbasque Enrique Solano, en colaboración con un grupo experimental de la Universidad de Tsinghua (Pekín, China) dirigido por el profesor Kihwan Kim, ha creado un simulador cuántico que es capaz de crear fenómenos no físicos en el mundo atómico, es decir, fenómenos físicos imposibles. Los investigadores de ambos grupos han logrado que un átomo atrapado imite comportamientos que contradicen a sus propias leyes fundamentales, llevando los elementos de la ciencia ficción al mundo microscópico. “Hemos conseguido que un átomo actúe como si violase la naturaleza de los sistemas atómicos, es decir, la física cuántica y la teoría de la relatividad. Al igual que sucede en el teatro o en las películas de ciencia ficción, donde los actores parecen mostrar comportamientos absurdos que van en contra de las leyes naturales, en este caso, los átomos son obligados a simular acciones absurdas como si se tratara de un actor de teatro o ficción”, explica el profesor Solano.

Los resultados de esta investigación han sido publicados en la prestigiosa revista Nature Communications, en el artículo “Time reversal and charge conjugation in an embedding quantum simulator” (La inversión del tiempo y la conjugación de carga en un simulador cuántico generalizado). El equipo investigador del grupo QUTIS de la UPV/EHU ha sido liderado por el Prof. Enrique Solano, y ha contado con la participación del Dr. Lucas Lamata y el Dr. Jorge Casanova, actualmente en la Universidad de Ulm, Alemania.

En este experimento, los investigadores han reproducido en el laboratorio la propuesta teórica previa recogidaen una investigación previa liderada por el grupo QUTIS, donde se describe la posibilidad de que un átomo atrapado pueda realizar comportamientos incompatibles con las leyes fundamentales de la física cuántica. Más concretamente, operaciones prohibidas en sistemas físicos microscópicos, como la conjugación de carga, que transforma partícula en antipartícula, o la inversión temporal, que invierte la dirección de la flecha del tiempo.

Para la realización del experimento fue necesario utilizar un átomo cargado y atrapado con campos electromagnéticos bajo la acción de un sistema avanzado de láseres. Este tipo de operaciones de simetría podríamos calificarlas como prohibidas, ya que sólo podrían existir en un universo distinto al que conocemos, con leyes distintas. Sin embargo, en este experimento se ha  podido simular la realización de este conjunto de leyes imposibles en un sistema atómico.

El grupo QUTIS de la UPV/EHU es líder mundial en simulación cuántica y sus influyentes propuestas teóricas son verificadas con frecuencia en los laboratorios más avanzados de tecnologías cuánticas. En este caso, operaciones físicas prohibidas para el mundo atómico son reproducidas como en la ciencia ficción, es decir, como si sucedieran de forma artificial en un teatro cuántico.

images (1)    Violar la relatividad de Einstein

La simulación cuántica ya comienza a dar los primeros resultados  importantes. En 2012, el instituto que vela por que EEUU siga  siendo una potencia mundial de la innovación y la industria en el  futuro, el NIST, creó un simulador cuántico hecho de iones  atrapados que permitió multiplicar por 10 la capacidad de cálculo  de un ordenador cuántico, un importante salto en el desarrollo de  estas tecnologías. Un año antes, el equipo de Solano, que es profesor Ikerbasque en la UPV, publicó su estudio teórico en el que describía por primera vez cómo violar una de las leyes fundamentales de la física cuántica usando un simulador parecido al de EEUU. En 2013, otro trabajo suyo describió cómo usar ese dispositivo para violar la teoría de la relatividad especial de Einstein y estudiar partículas capaces de viajar al pasado. “Lo que conseguimos fue el equivalente a meter gol antes de chutar el balón, es decir, conseguir un efecto antes que la causa gracias a una partícula que viaja más rápido que la luz”, detalla Solano.

El físico compara sus simuladores con un “teatro cuántico”. Al igual que un actor que interpreta a Don Quijote sobre las tablas hace que se muere sin estar muerto, las partículas del simulador hacen que viajan más rápido que la luz, aunque no lo hagan en realidad.

Algunas de estas simulaciones teóricas ya han sido confirmadas en la práctica. Lo han demostrado otros físicos experimentales a partir de los estudios teóricos publicados por Solano desde 2011. Por ejemplo, el equipo de Alexander Szameit, usando un simulador cuántico de fotones en la Universidad de Jena (Alemania), acaba de confirmar que la propuesta de romper las leyes fundamentales de la física cuántica y estudiar partículas “no físicas” funciona en la práctica.

“Enrique fue el primero en el mundo que tuvo la idea y después nosotros creamos nuestra propia demostración práctica”, explica Szameit a Materia. En concreto su equipo usó fotones que, modificados, se comportan como otras partículas “imposibles” que normalmente se desechan al resolver la ecuación de Majorana, uno de los pilares de la física cuántica. Algunas soluciones “no físicas” de esa ecuación implican la existencia de dimensiones extras, algo que han defendido muchos físicos, incluido Stephen Hawking, pero que no hay forma de estudiar de forma directa. Por eso los simuladores cuánticos son tan interesantes.

“Uno no puede decir que esto sea física imposible porque algún día podríamos encontrar nuevas leyes naturales que permitan estos fenómenos”, explica Szameit. Él prefiere hablar de “fenómenos no físicos”.

Los simuladores ideados por Solano pueden tener importantes aplicaciones prácticas. Simular lo imposible requiere potentes algoritmos que después pueden usarse para mejorar, por ejemplo, la computación cuántica o explorar “propiedades de un material que sería inalcanzable con otros métodos”, resalta Solano. “Las simulaciones de fenómenos no físicos no son solo un juego de científicos, tienen un enorme potencial en un numerosas aplicaciones”, resalta Szameit, que augura que esta nueva técnica tendrá “un enorme impacto en la comunidad científica y muchos estudios de seguimiento”. El próximo bien podría ser la esperada confirmación de que las leyes de la relatividad de Einstein se pueden violar con un simulador cuántico como propuso Solano.

 

 

 

Fuente:

Facultad de Ciencia y Tecnología 

Universidad del País Vasco UPV/EHU